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Extremal Values & Lagrange Multipliers

Stress we are only looking at scalar-valued functions.

Definition 1 Suppose that f : U ⊆ Rn → R is a function. Given a point

a ∈ U,

• if f(x) ≤ f(a) for all x ∈ U we say that f has a global or absolute

maximum at a;

• if f(x) ≥ f(a) for all x ∈ U we say that f has a global or absolute

minimum at a;

• if there exists an open set V ⊆ Rn with a ∈ V such that f(x) ≤ f(a)

for all x ∈ V ∩ U then we say that f has a local maximum at a;

strict if f(x) < f(a) for all x ∈ V ∩ U \ {a};

• if there exists an open set V ⊆ Rn with a ∈ V such that f(x) ≥ f(a)

for all x ∈ V ∩ U then we say that f has a local minimum at a;

strict if f(x) > f(a) for all x ∈ V ∩ U \ {a};

• An extremum is a point which is either a maximum or minimum, so

we can refer to a (strict) absolute extremum or (strict) local extremum.

Recall the Chain Rule in the special situation R g→ Rn f→ R which

gives, under appropriate conditions on the functions,

(f ◦ g)′ (t) = dfg(t) (g′ (t)) = ∇f(g(t)) • g′ (t) = Jf(g(t)) g′ (t) .

The following is the generalisation of the result that the extrema for real-

valued functions of one variable occur at the turning points.

Proposition 2 Suppose that f : U ⊆ Rn → R is a Fréchet differentiable

function on the open set U which has a local extremum at a ∈ U . Then

the derivative dfa = 0 (i.e. it is the zero linear map from Rn to R) or,

equivalently, ∇f(a) = 0 or Jf(a) = 0.
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Proof Let v ∈ Rn a non-zero vector be given. Since a ∈ U and U is an open

set there exists η > 0 such that for |t| < η we have a + tv ∈ U . For such t

define φ(t) = f(a + tv).

Since f has a local extremum at a, then f has a local extremum at a as

you approach a in the direction of v, that is φ (t) has a local extremum at

t = 0. So, by second year analysis,

0 = φ′(0) = lim
t→0

φ(t)− φ(0)

t
= lim

t→0

f(a + tv)− f(a)

t
= dvf(a) ,

where, unlike earlier in the course, we are not restricting to unit v in dvf . Yet

f is Fréchet differentiable at a so we have dfa(v) = dvf(a). Thus dfa(v) = 0

for all non-zero v. Hence dfa = 0 �

Definition 3 Given a Fréchet differentiable function f : U ⊂ Rn → R
then a ∈ U is a critical point if dfa = 0 or, equivalently, ∇f(a) = 0 or

Jf(a) = 0.

So, if extremums exist, they are a subset of the critical points, thus to

find the extremums you first find the critical points.

Be aware that Proposition 2 says that IF an extremum exists then it is a

critical point. It does not say that extremums exist. For a proof of existence

you will need to apply other results. We have seen such a result in Second

Year Analysis: a continuous function on a closed and bounded subset of R
is bounded and attains its bounds.

A subset A of Rn is closed if its complement is open. A set B is bounded

if there exists M ∈ R such that |x| ≤ M for all x ∈ B. Sets which are both

closed and bounded are said to be compact. The fundamental existence

theorem for maxima and minima is

Theorem 4 A continuous real-valued function defined on a compact subset

of Rn attains it’s global maximum and attains it’s global minimum.

Proof Not given. �
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Example 5 Find the critical points of f(x) = x2y2+z2+2x−4y+z, x ∈ R3.

Solution (Problem Class) The gradient vector is

∇f(x) =
(
2xy2 + 2, 2yx2 − 4, 2z + 1

)T
.

Then ∇f(x) = 0 iff

2xy2 + 2 = 0,

2yx2 − 4 = 0,

2z + 1 = 0.

From the last equation z = −1/2. From the first two we see that x and

y are neither 0. Multiply first equation by 2 and add the second to see that

0 = 4xy2 + 2yx2 = 2xy (2y + x). Since neither x nor y is 0 we must have

x = −2y. In the second equation this gives 2y3 − 1 = 0. Therefore the only

critical value is

a =
(
−22/3, 2−1/3, − 2−1

)T
.

�

Example 6 Find the critical points of f(x) = x2 − y2 + z2. Are they ex-

tremal?

Solution ∇f(x) = 0 iff 2x = 0, −2y = 0 and 2z = 0 so the only critical

point is x = (0, 0, 0)T .

The value f(0) = 0 is not a local maximum because, in any open set

0 ∈ U ⊆ R3 we can find t = (t, 0, 0)T ∈ U with t 6= 0, in which case

f(t) = t2 > 0 = f(0).

Also f(0) = 0 is not a local minimum because, in any open set 0 ∈ U ⊆ R3

we can find s = (0, s, 0)T ∈ U with s 6= 0, in which case f(s) = −s2 < 0 =

f(0). �

There can be no extremal values since there are no other critical points

to examine. In particular, there is no global maximum or global minimum.

We could have seen this directly; by choosing x = (x, 0, 0)T we can make

f(x) = x2 as large and positive as we like while, with x = (0, y, 0)T , we can

make f(x) = −y2 as large and negative as we like.
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It is important to stress that if a is a local extremum then a is a critical

point, while a critical does not imply a is a local extremum.

a a local extremum =⇒ a critical,

a critical 6=⇒ a a local extremum

Nonetheless one can find local extremum by searching amongst the critical

points.

Problem Suppose that f : Rn → R and g : Rn → Rm are Fréchet differ-

entiable. How to find max {f(x) : g(x) = 0} and min {f(x) : g(x) = 0} or

what we might group together as ext {f(x) : g(x) = 0}?
From Chapter 4 we know that {x : g(x) = 0, Jg(x) is of full-rank} is an

example of a surface. So we could ask the more general question of how to

find ext {f(x) : x ∈ S} for a surface S ⊆ Rn. We call these the extreme

values of f subject to the constraint that x lies on the surface S.

The solution is rather nice.

Assume a ∈ S. However, unless S is already given as a graph, we know

by either the Implicit Function Theorem or Inverse Function Theorem, that

there exists an open set W ⊆ Rn containing a, and, for some r ≥ 1, a subset

V ⊆ Rr and a C1-function φ : V → Rn−r such that

S ∩W = {F(u) : u ∈ V } ,

where the function F : V → Rn given by

F(u) =

(
u

φ(u)

)
.

for u ∈ V . Since a ∈ S ∩W there exists b ∈ V such that a = F(b).

Next,

{f(x) : x ∈ S ∩W} = {f(F(u)) : u ∈ V } = {G(u) : u ∈ V } , (1)

where G : V → R is the composite function G = f ◦ F.

Thus

ext {f(x) : x ∈ S ∩W} = ext {G(u) : u ∈ V } .
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We find the extremal points by searching through the critical points of

G, i.e. finding b ∈ V : JG(b) = 0.

The Fundamental Observation What has happened in (1) is that in the

left hand set the x ∈ Rn are restricted to lie in a subset S ⊆ Rn, with

dimension less than n. In the right hand side set of (1) the u ∈ Rr are

restricted to a subset V ⊆ Rr of the same dimension as Rr.

Definition 7 We say that a is a critical point for f restricted to S if

dGb = 0, or JG(b) = 0, for the G and b arising as above.

The ‘nice’ result referred to above is

Theorem 8 Suppose that S ⊆ Rn is a surface. Let the scalar-valued f :

Rn → R be a Fréchet differentiable function. If a ∈ S is a critical point of f

restricted to S then

∇f(a) ∈ Ta (S)⊥ .

That is, at a critical point a of f restricted to S the gradient vector of f

is perpendicular to the Tangent Space to S at a.

Proof Assume that a ∈ S is a critical point of f restricted to S. As above,

there exists W ⊆ Rn with a ∈ W along with a C1-function F : V ⊆ Rr → Rn

such that

S ∩W = {F(u) : u ∈ V } .

Then

{f(x) : x ∈ S ∩W} = {G(u) : u ∈ V } .

where G = f ◦ F.

The definition of a is a critical point of f restricted to S is that dGb = 0

where b ∈ V with F(b) = a. Apply the Chain Rule in the Jacobian matrix

form. Since dGb = 0 the Jacobian matrix satisfies JG(b) = 0 which implies

0 = JG(b)

= Jf(F(b)) JF(b) by the Chain Rule

= Jf(a) JF(b) since a = F(b) .
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For a scalar-valued function Jf(a) = ∇f(a)T , so

∇f(a)T JF(b) = 0. (2)

In particular, ∇f(a) is orthogonal to each column vector in JF(b). Yet, by

a result in the chapter on surface the column vectors of JF(b) form a basis

to Ta (S). Hence (2) implies ∇f(a) is orthogonal to all vectors in a basis of

Ta (S) and thus ∇f(a) ∈ Ta (S)⊥. �

Aside The result ∇f(a) ∈ Ta (S)⊥ means that ∇f(a) is normal to the Tan-

gent Space and thus the surface at a. If∇f(a) were not normal to the surface

then we could find a vector in the Tangent plane, v say, with ∇f(a) • v > 0

(actually 6= 0, but if < 0 replace v by −v). Yet v in the tangent plane means

there exists a curve in the surface γ : (−η, η) ⊆ R → S such that γ(0) = a

and γ ′ (0) = v. Thus ∇f(a) ·γ ′ (0) > 0, and so (by the Chain Rule in reverse)

d

dt
f(γ(t))

∣∣∣∣
t=0

> 0.

If we have continuity of derivative then df(γ(t)) /dt > 0 for all t sufficiently

close to 0. Thus the value of f increases as you travel away from a on γ with

increasing t > 0 and decreases as you travel away with increasing magnitude

t < 0. This would contradict f having an extremum at a.

End of Aside

Lagrange Multipliers In the majority of examples the surface is given as

a level set, S = g−1(0) for some g : Rn → Rm. As we saw in Chapter 3, at

a ∈ S the space orthogonal to the Tangent Space of a level set, i.e. Ta (S)⊥ ,

is spanned by the rows of Jg(a), which are the gradient vectors ∇gi(a),

1 ≤ i ≤ m. Thus Theorem 8 says that for such S if a ∈ S is a critical point

of f restricted to S then ∇f(a) ∈ Span {∇gi(a) , 1 ≤ i ≤ m.}. Equivalently,

there exist constants, the Lagrange multipliers, λi, 1 ≤ i ≤ m such that

∇f(a) = λ1∇g1(a) + λ2∇g2(a) + ...+ λm∇gm(a) .

The λi are useful but ultimately irrelevant constants.
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Example 9 Find the maximum and minimum values of 2x+ 3y− z subject

to x2 + y2/2 = 1 and x+ z = 1.

Solution Define g : R3 → R2 by

g(x) =

(
x2 + y2/2− 1

x+ z − 1

)
.

for x ∈ R3.

To apply Lagrange’s method we require {x : g(x) = 0} to be a surface,

i.e. Jg(x) of full-rank. The Jacobian matrix of the level set is

Jg(x) =

(
2x y 0

1 0 1

)
.

The only time this is not of full-rank is when the top row is 0, i.e. x = y = 0.

But if x = y = 0 then g(x) 6= 0. Hence {x : g(x) = 0} is a surface and we

can apply the method of Lagrange multipliers and try to solve

∇f(x) = λ∇g1(x) + µ∇g2(x)

for x : g(x) = 0 and λ, µ ∈ R.

The first condition is 2

3

−1

 = λ

 2x

y

0

+ µ

 1

0

1

 , i.e.

2 = 2λx+ µ,

3 = λy,

−1 = µ.

These reduce to two: λx = 3/2 and λy = 3. These can be substituted into

g1(x) = 0 written as 2 = 2x2 + y2, to get

2λ2 = 2 (λx)2 + (λy)2 = 2

(
3

2

)2

+ (3)2 = 323

2
.

Thus λ = ±3
√

3/2. Hence x = ±1/
√

3, y = ±2/
√

3 and, from g2(x) = 0,

z = 1∓ 1/
√

3.

7



We have, therefore, two critical points of f restricted to the surface are

a1 =

(
1√
3
,

2√
3
, 1− 1√

3

)T
,

a2 =

(
− 1√

3
, − 2√

3
, 1 +

1√
3

)T
.

We need show these correspond to extremal values of f . First note that

the set of x : g(x) = 0 is bounded. From x2 + y2/2 = 1 we have |x| ≤ 1,

|y| ≤
√

2. Then from x+ z = 1 we have |z| = |1− x| ≤ 1 + |x| ≤ 2.

Next note that the set of x : g (x) = 0 is closed since its compliment is

open; if g(x0) 6= 0 then g(x) 6= 0 for all x sufficiently close to x0, i.e. for

x ∈ Bδ (x0) for sufficiently small δ > 0.

Hence, since f(x) = 2x + 3y − z is continuous it will have maximum and

minimum values on this compact subset of R3. These will each correspond

to a critical point and since we have only found two critical points they must

correspond to these extrema.

All that remains are the calculations f(a1) = 3
√

3 − 1, the maximum,

and f(a1) = −3
√

3− 1, the minimum value. �

Remark The method can be used to find extreme values on more general

closed sets. For example, suppose we wish to find the maximum and mini-

mum values of a Fréchet differentiable function f : R3 → R on the closed

ball {x ∈ R3 : |x| ≤ 1}. We might use Lagrange multipliers to

• identify the maximum and minimum values on the sphere {x ∈ R3 : |x| = 1}
and then

• search amongst the critical values in the open ball {x ∈ R3 : |x| < 1},
using dfx = 0, to find the maximum and minimum values in the open

ball.
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Example 10 Find the maximum and minimum values of f(x) = 4x2 +10y2

on the closed disc {x ∈ R2 : x2 + y2 ≤ 4}.

Solution (Problem Class) We first look for critical points in the interior

of the set, i.e. x : x2 + y2 < 4 and ∇f(x) = 0. But ∇f(x) = (8x, 20y2)
T

equals 0 only when x = 0. So 0 is the only critical point in the interior.

We now look for critical points restricted to the boundary. Let g(x) =

x2 + y2− 4, we want the critical points of f restricted to g(x) = 0. To apply

Lagrange’s method the Jacobian matrix of g has to be of full-rank. In this

case, Jg(x) = (2x, 2y). The only way this cannot be of full-rank is if it is

0, i.e. x = y = 0. But g(0) = −4 6= 0, and so Jg(x) is of full-rank for all

x : g(x) = 4.

We need to solve ∇f(x) = λ∇g (x) with g (x) = 0. The condition on the

gradient vectors is (
8x

20y

)
= λ

(
2x

2y

)
,

so 4x = λx and 10y = λy. That is, (4− λ)x = 0 and (10− λ) y = 0.

Then (4− λ)x = 0 implies either 4 − λ = 0 or x = 0. If 4 − λ = 0 then

10 − λ 6= 0 so the second equation implies y = 0. Then g(x) = 0 implies

x = ±2.

If x = 0 then g(x) = 0 implies y = ±2 (and (10− λ) y = 0 implies λ = 10,

though this is not required).

Hence the five critical points are (0, 0)T , (±2, 0)T and (0,±2)T .

The function f is continuous and the disc closed and bounded so f will

attain it’s extremal values on the disc. We search through these points to

find the extremal values:

f (0) = 0, minimum value,

f
(

(±2, 0)T
)

= 16,

f
(

(0,±2)T
)

= 40 maximum value.
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Note this result should be no surprise. Consider the diagram of the circle

x2 + y2 = 4 and the ellipse 4x2 + 10y2 = c drawn with a variety of values for

c.

The inner ellipse has c = 4, say, when the ellipse and circle do not inter-

sect. When c = 16 they intersect at (±2, 0). The forth ellipse has c = 40 when

the points of intersection are (0,±2) . So the minimum value of 4x2 + 10y2

taken by points on the circle is 16, the maximum 40.

But further, we can see that 16, the value of 4x2+10y2 at (±2, 0) is neither

a local minimum or maximum in the disc. Looking closely at (2, 0) , if we

move away from it within the gray region the values of 4x2 + 10y2 increase.

(2,0)

Whereas if we move away from (2, 0) within this gray region the values de-

crease.

(2,0)
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Appendix for Section 5

Surfaces in R3

Consider the surface in R3 given as a graph of f : R2 → R, so S =

{F(x) : x ∈ R2} with

F(x) =

(
x

f(x)

)
.

In an earlier Appendix we showed that dvf(q) represents the rate of

change of the z-coordinate (i.e. height) of the point p = F(x) on the surface

as q moves in the v direction.

If a is a critical point of f then ∇f(a) = 0 and so dvf(q) = ∇f(a) • v =

0 for all v. This means, essentially, that there is no change in height as

you immediately move from the point F(a) on the surface, i.e. it is locally

horizontal.

Another way to look at this is consider the Tangent plane which is the

graph of

f(a) + Jf(a) (x− a) = f(a) ,

since Jf(a) = 0. That is, the Tangent Plane is{(
x

f(a)

)
: x ∈ R2

}
,

a horizontal plane.

Examples

Example Find the extremal values of f(x) = 7x2 + 6xy + 7y2 on the closed

disc {x ∈R2 : x2 + y2 ≤ 8}.

Solution On the interior x2 + y2 < 8 the only critical point x : ∇f(x) = 0

is x = 0.

On the boundary x2 + y2 = 8 the critical points satisfy the system

14x+ 6y = 2λx and 6x+ 14y = 2λy. (3)
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Rewrite in matrix form as(
7− λ 3

3 7− λ

)(
x

y

)
= 0.

If the determinant is non-zero then the only solution is x = 0, which does

not lie on x2 + y2 = 8.

If the determinant is zero then λ satisfies (7− λ)2 − 9 = 0, This has two

solutions, 4 and 10.

If λ = 4 then the system (3) reduces to the one equation x + y = 0. In

x2 + y2 = 8 this gives the points (2,−2)T and (−2, 2)T .

If λ = 10 then we get x− y = 0 which leads to (2, 2)T and (−2,−2)T .

Thus we have five critical points (±2,∓2)T , (±2,±2)T and 0.

The function f is continuous and the disc closed and bounded so f will

attain it’s extremal values on the disc. We search through these points to

find the extremal values:

f (0) = 0, minimum value,

f
(

(±2,∓2)T
)

= 32,

f
(

(±2,±2)T
)

= 80 maximum value.

�

A standard application of Lagrange’s method is to give a proof of the

arithmetic-geometric mean inequality.

Example 11 GM-AM inequality For n positive real numbers

x1, x2, ... , xn > 0

we have

(x1x2...xn)1/n ≤ x1 + x2 + ...+ xn
n

.

Solution First assume x1, x2, ..., xn > 0 and x1 + x2 + ... + xn = 1. We will

show that for such {xi}1≤i≤n we have

x1x2...xn ≤
1

nn
.
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This entails finding the maximum of f(x) = x1x2...xn subject to g(x) =

x1 + x2 + ...+ xn = 1 and x1, x2, ..., xn > 0.

Note that if x : g(x) = 1 and x1, x2, ..., xn > 0 then 0 < xi ≤ 1 for all i so

|x| ≤
√
n, i.e. the set of such x is bounded. Also the set is closed, because its

compliment is open: If g (x) 6= 1 then ∃ δ > 0 : x′ ∈ Bδ (x) implies g(x′) 6= 1.

Hence S = {x : g(x) = 1 and x1, x2, ..., xn ≥ 0} is a compact set. Since f is

continuous it is bounded and attains its bounds.

If any xi = 0 then f(x) = 0, a minimum value for f . So assume all xi > 0

and look for extrema in S ′ = {x : g(x) = 1 and x1, x2, ..., xn > 0}. We look

for these within the critical points of f restricted to S ′, i.e. those x satisfying

∇f(x) = λ∇g(x) for some λ, with x1, x2, ..., xn > 0. Yet ∇f(x) = λ∇g(x)

becomes

λ (1, 1, ..., 1) = (x2...xn, x1x3...xn, x1x2x4...xn, ..., x1x2...xn−1)

= x1x2...xn

(
1

x1
,

1

x2
, ...,

1

xn

)
.

This implies x1 = x2 = ... = xn. Within g (x) = 1 this means x1 = x2 = ... =

xn = 1/n. Therefore at the critical point we find f(x) = 1/nn. Since there

is only one critical point it must give the maximum value of f(x). Hence

f(x) ≤ 1/nn for all x ∈ S.

Assume now that we only have the restriction x1, x2, ..., xn > 0. Let

M =
∑n

i=1 xi and define yi = xi/M for all 1 ≤ i ≤ n. Then y1, y2, ..., yn > 0

and

y1 + y2 + ...+ yn =
x1 + x2 + ...+ xn

M
=
M

M
= 1.

So we can apply the result above to deduce that

y1y2...yn ≤
1

nn
, i.e.

x1
M

x2
M
...
xn
M
≤ 1

nn
so x1x2...xn ≤

Mn

nn
.

Then

(x1x2...xn)1/n ≤ M

n
=
x1 + x2 + ...+ xn

n
,

as required. �

13



A subtle point. You may attempt this by looking for a lower bound for

f(x) = x1 + x2 + ... + xn subject to x1x2...xn = 1. Unfortunately the set of

x : x1x2...xn = 1 is not bounded and thus not compact. Then you could not

apply Theorem 4 to deduce that there will be extrema.

Another standard application is to give a proof of a result used many

times in this course, often in the form |a • b| ≤ |a| |b| for a,b ∈ Rn.

Example 12 Cauchy-Schwartz For arbitrary real numbers ai, bi, 1 ≤ i ≤
n, we have (

n∑
i=1

aibi

)2

≤
n∑
i=1

a2i

n∑
i=1

b2i .

Solution Set up. We work inside Rn × Rn, the space of ordered pairs of

vectors. What does a general x ∈ Rn × Rn look like? Simple, x = (a,b)

an ordered pair with a,b ∈ Rn. But what are the coordinates of x? Relate

Rn × Rn to R2n by the bijection

(a,b)→

(
a

b

)
.

Reversing this map, x1

...

x2n

→

 x1

...

xn

 ,

 xn+1

...

x2n


 .

Thus, if x = (a,b) , then xi = ai for 1 ≤ i ≤ n and xi = bi−n for n+ 1 ≤ i ≤
2n.

We first show that |a • b| ≤ 1 when |a| = 1 and |b| = 1.

Define f : Rn×Rn → R, (a, b) 7→ a•b. Let S = {(a, b) ∈ Rn × Rn : |a| = |b| = 1}.
Then S is a closed and bounded set, i.e. compact. Also f is a continuous

function, so f is bounded and attains its bounds. We look for these extrema

within the critical points.

Define

g1 : Rn × Rn → R, (a, b) 7→ a • a = |a|2 ,

g2 : Rn × Rn → R, (a, b) 7→ b • b = |b|2 .
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So

S = {x ∈ Rn × Rn : g1 (x) = g2 (x) = 1} .

We can only apply Lagrange’s method if the Jacobian matrix of this level

set is of full-rank. Let x = (a,b) for some a,b ∈ Rn. From

a • a =
n∑
i=1

(
ai
)2

we see that
d

dxi
g1 (x) =

d

dai
a • a = 2ai

for 1 ≤ i ≤ n, while
d

dxi
g1(x) =

d

dbi−n
a • a = 0

for n+ 1 ≤ i ≤ 2n. Thus Jg1 (x) =
(
2aT ,0T

)
, where x =

(
aT ,bT

)T
.

Similarly for Jg2 and then the 2×2n Jacobian matrix is(
Jg1(x)

Jg2(x)

)
=

(
2aT 0T

0T 2bT

)
,

This is of full-rank whenever a 6= 0 and b 6= 0, which anyway are excluded

by the conditions |a| = |b| = 1.

Thus we can apply Lagrange’s method when the critical points of f restricted

to S are x ∈ Rn × Rn which satisfy ∇f(x) = λ∇g1(x) + µ∇g2(x) for some

real λ, µ. Here

∇f(x) =


∂f(x) /∂x1

...

...

∂f(x) /∂x2n

 =



∂a • b/∂a1

...

∂a • b/∂an

∂a • b/∂b1

...

∂a • b/∂bn


=

(
b

a

)
.

Thus (
b

a

)
= λ

(
2a

0

)
+ µ

(
0

2b

)
,
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From the first line b = 2λa. Since |a| = |b| = 1 we have 2λ = ±1

and thus b = ±a. So the critical points of f restricted to S are contained

within the set of points (a, a) and (a, −a) with |a| = 1. For these points

f((a, a)) = |a|2 = 1 and f((a, −a)) = − |a|2 = −1. These, therefore, are

the extreme values and in general

−1 ≤ f((a, b)) ≤ 1.

This was proved subject to |a| = 1 and |b| = 1. If we only know that

a 6= 0 and b 6= 0 we can apply the result just proved to a/ |a| and b/ |b| to

get

−1 ≤ f

((
a

|a|
,

b

|b|

))
≤ 1.

But

f

((
a

|a|
,

b

|b|

))
=

a

|a|
• b

|b|
=
f((a, b))

|a| |b|
.

Hence

− |a| |b| ≤ f((a, b)) ≤ |a| |b|

That is |f((a, b))| ≤ |a| |b| as required. �

Other examples are

Example 13 Let e1, e2, ..., en be positive numbers with
∑n

i=1 ei = 1. Max-

imise the function f(x) = xe11 x
e2
2 ...x

en
n subject to

∑n
i=1 eixi = 1 and xi > 0

for all 1 ≤ i ≤ n.

Deduce the extended GM-AM inequality:

xe11 x
e2
2 ...x

en
n ≤ e1x1 + e2x2 + ...+ enxn

for all non-negative xi.

Solution The i-th component of ∇f(x) = λ∇g(x) is

ei
xe11 x

e2
2 ...x

en
n

xi
= λei,

Thus λxi = y say, is the same value for all i. From
∑n

i=1 eixi = 1 we then

get

λ =
n∑
i=1

eiλxi = y
n∑
i=1

ei = y,
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since
∑n

i=1 ei = 1. Thus y = λ which in λxi = y gives xi = 1 for all i. Hence

f(x) is maximised at x = 1 and f(x) ≤ f(1) = 1 for all x :
∑n

i=1 eixi = 1

and xi > 0 for all 1 ≤ i ≤ n.

Given an x with xi > 0 for all i, which does not satisfy
∑n

i=1 eixi = 1

define x̂ = x/
∑n

i=1 eixi. The components of this now satisfy
∑n

i=1 eix̂i = 1

and so, by above, f(x̂) ≤ 1. Yet

f(x̂) = f

(
x∑n

i=1 eixi

)
=

1

(
∑n

i=1 eixi)
e1+e2+...+en

f(x) =
1∑n

i=1 eixi
f(x) ,

since
∑n

i=1 ei = 1. Then f(x̂) ≤ 1 rearranges to f(x) ≤
∑n

i=1 eixi. �

Example 14 Show that the maximum of x1x2...xn on

n∑
m=1

x2m
m2

= 1 (4)

is
n!

nn/2
.

Geometrically the surface (4) is of an ellipsoid in Rn. Then x1x2...xn is

the volume of a box with one corner at the origin and the diagonally opposite

corner on the surface of the ellipsoid.

Hint Write X = x1x2...xn then the system of equations arising from La-

grange’s method is
X

xi
= 2λ

xi
i2
,

for 1 ≤ i ≤ n along with (4).

Example 15 Maximise x2y2 subject to the constraint

x2p

p
+
y2q

q
= r2,

where p and q are real numbers greater than 1 which satisfy

1

p
+

1

q
= 1.

17



Show that the maximum is achieved when x2p = y2q = r2. Now conclude

that if x, y > 0 then

xy ≤ xp

p
+
yq

q
,

and equality is attained for some x and y.

Solution The x component of ∇f(x) = λ∇g(x) is 2xy2 = 2x2p−1, the y

component 2x2y = 2y2q−1. Thus 2y2q = 2x2y2 = 2x2p, i.e. y2q = x2p. In

x2p

p
+
y2q

q
= r2 with

1

p
+

1

q
= 1

gives y2q = x2p = r2. The maximum is thus

x2y2 = r2/pr2/q = r2

since 1/p+ 1/q = 1.

If x, y > 0 are given apply the above to s, t satisfying s2 = x and t2 = y.

Define r by

r2 =
s2p

p
+
t2q

q
.

Then as proved above, s2t2 ≤ r2. Substituting back for x and y gives

xy ≤ xp

p
+
yq

q
.

�

Example 16 Let p and q be positive real numbers which satisfy

1

p
+

1

q
= 1.

Maximise the function g : Rn×Rn, (a, b) 7→ a•b, subject to |a|p = 1 and

|b|q = 1 where, for x ∈ Rn we define

|x|p =

(
n∑
i=1

xpi

)1/p

.

Derive Holder’s Inequality: for non-negative a1, ..., an, b1, ..., bn we have

n∑
i=1

aibi ≤

(
n∑
i=1

api

)1/p( n∑
i=1

bqi

)1/q

.
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Returning to an example in the lectures.

Example 17 The critical point of f(x) = x2y2 + z2 + 2x− 4y + z is not an

extremal value.

Solution The critical point is a =
(
−22/3, 2−1/3, − 2−1

)T
. Let u = (1, 1, 0)T

and v = (0, 1, 0)T . Then it can be shown that

f(a+tu) = f(a) +
1

4

(
2t−

(
3
√

2
)2)(

2t+ 3
(

3
√

2
)2)

t2 < f (a) ,

provided −3 × 2−1/3 < t < 2−1/3. and t 6= 0. This shows f(a) is not a local

minimum. Also

f(a+tv) = f(a) + 2
3
√

2t2 > f (a)

for all t 6= 0. This shows that f(a) is not a local maximum. �
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